Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 11(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535850

RESUMO

Studies in cattle have shown that high temperatures increase the production of reactive oxygen species (ROS) causing an imbalance between ROS and the ability of antioxidant systems to detoxify and remove the reactive intermediates. As such studies remain limited in buffalo, the effect of temperature on oxidative stress was investigated through the oxidative stress index (OSi). Blood samples were collected from 40 buffaloes over 12 time points distributed over two years (2021, 2022). Samples were taken monthly during the hot and cold seasons. Plasma free oxygen radicals were determined using the d-ROMs test (Diacron, Italy), modified for a microplate procedure, and the results were expressed in arbitrary Carratelli Units (U.CARR). Plasma antioxidants were determined by using the BAP test (Diacron) in a dedicated spectrophotometer (Carpe Diem Free, Diacron). The OSi parameter was calculated as d-ROMs/BAP × 100. Temperature and humidity were recorded daily during the trial to calculate the Temperature Humidity Index (THI). For statistical analysis, year and season and their interactions were included in the model. The results of this study showed for the first time the effect of season on the oxidative stress in buffalo. The minimum and maximum THI values for the hot and cold season recorded during the experimental period were 79.27 ± 2.20 and 63.42 ± 3.20, respectively. Levels of d-ROMs and BAP were affected by the seasons (133.0 vs. 145.1 U.CARR, p = 0.0189, and 2489.19 vs. 2392.43 mml/L, p = 0.033, in the hot and cold season, respectively). A significant year × season interaction was found both for d-ROMs and BAP (p = 0.06 and p < 0.0001, respectively). Moreover, OSi was affected by season, showing a growing trend from hot to cold season (5.35 vs. 6.17, p < 0.0001), but, interestingly, it was unaffected by annual variation. Therefore, Osi could be considered a better and independent marker of oxidative status in buffalo, with respect to the evaluation of single determinations of d-ROMs and BAP. Lastly, there were no differences in the plasma 25OHD levels between seasons; concentrations were 12.24 and 10.26 ng/mL in the hot and cold season, respectively.

2.
Sci Rep ; 13(1): 10846, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407588

RESUMO

Vitamin D deficiency at birth, followed by prolonged insufficiency in early life may predispose bovine calves to infection and disease. However, the effects of vitamin D levels on innate immunity are unclear due to the lack of long-term supplementation trials in vivo and reliable approaches for reproducibly assessing immune function. Here, a standardized whole blood immunophenotyping assay was used to compare innate immune responses to infection relevant ligands (LPS, Pam3CSK4 and R848) between Holstein-Friesian calves supplemented with vitamin D (n = 12) from birth until 7 months of age and control calves (n = 10) raised on an industry standard diet. Transcriptomic analysis in unstimulated whole blood cells revealed increased expression of type I interferons and chemokines in vitamin D supplemented calves, while IL-1 and inflammasome gene expression was decreased. In response to stimulation with the bacterial ligand LPS, supplemented calves had significantly increased expression of CASP1, CX3CR1, CAT, whereas STAT1 was decreased. Stimulation with the bacterial ligand Pam3CSK4 revealed increased expression of IL1A, IL1B and CAT genes; and decreased C5AR1 expression. In response to the viral ligand R848, STAT1 and S100A8 expression was significantly decreased. An increased IL-1 and inflammasome gene expression signature in vitamin D supplemented calves in response to LPS and Pam3CSK4 was also found, with ELISA confirming increased IL-1ß protein production. In contrast, a decreased chemokine gene expression signature was found in response to R848 in supplemented animals, with decreased IL-8 protein expression exhibited in response to all PAMPs also found. These results demonstrated expression of several cytokine, chemokine and inflammasome genes were impacted by vitamin D supplementation in the first 7 months of life, with IL-8 expression particularly responsive to vitamin D. Overall, vitamin D supplementation induced differential innate immune responses of blood immune cells that could have important implications for disease susceptibility in cattle.


Assuntos
Colecalciferol , Interleucina-8 , Animais , Bovinos , Colecalciferol/farmacologia , Interleucina-8/genética , Lipopolissacarídeos , Inflamassomos , Ligantes , Vitamina D , Suplementos Nutricionais , Vitaminas/farmacologia , Interleucina-1
3.
Vet Immunol Immunopathol ; 258: 110575, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36848773

RESUMO

Vitamin D deficiency (VDD) is associated with enhanced susceptibility to multiple respiratory diseases in humans, including tuberculosis. However, the consequences of VDD for disease susceptibility in calves are unknown. Previously we developed a model to drive divergent circulating 25OHD concentrations in cattle, where animals were supplemented with vitamin D3 (vit D3) from birth to 7 months of age. Calves in the control group (Ctl) received a diet containing a standard vit D3 concentration, whereas the vit D group (VitD) received a diet with the highest vit D3 concentration allowed under EU guidelines. Here, we assessed the microbicidal activity and immunoregulatory effect of divergent 25OHD circulating levels to Mycobacterium bovis BCG challenge ex-vivo. Blood samples from Ctl and VitD calves were taken at 1-, 3- and 7-months of age. 25OHD concentrations were significantly different at 7 months (but not at 1 or 3 months) with animals from the VitD group having higher serum levels. Differences in microbicidal activity followed the same pattern, with no significant differences observed at 1 and 3 months, but at 7 months a significant increase in the percentage of bacteria killed was detected. Furthermore, analysis of the reactive oxygen species (ROS) and nitric oxide (NO) in serum showed a higher production of ROS and NO in VitD-supplemented calves. In contrast, serum concentrations of IL-1ß and IL-8 were significantly lower. A similar anti-inflammatory profile was observed after gene expression analysis, with a significant downregulation of a cluster of genes including IL1B, IL1R1, CXCL1, CXCL2, CXCL5, MMP9 and COX2 and an upregulation of CXCR1, CX3CR1 and NCF1, in VitD calves after BCG challenge relative to Ctl animals. Collectively, these results suggest that dietary vit D3 boosts antimicrobial and innate immune responses and thereby could improve host anti-mycobacterial immunity.


Assuntos
Anti-Infecciosos , Mycobacterium bovis , Animais , Bovinos , Vacina BCG , Colecalciferol/farmacologia , Suplementos Nutricionais , Espécies Reativas de Oxigênio , Vitamina D , Vitaminas
4.
Vet Immunol Immunopathol ; 256: 110536, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586390

RESUMO

A growing appreciation is emerging of the beneficial role of vitamin D for health and resistance against infectious diseases, including tuberculosis. However, research has predominantly focused on murine and human species and functional data in bovines is limited. Therefore, the objective of this study was to assess the microbicidal activity and immunoregulatory effect of the vitamin D metabolite 1,25(OH)2D3 on bovine peripheral blood leukocytes (PBL) in response to Mycobacterium bovis BCG (BCG) infection using a combination of functional assays and gene expression profiling. Blood from Holstein-Friesian bull calves with low circulating levels of 25(OH)D was stimulated with 1,25(OH)2D3 for 2 h, and then infected with M. bovis BCG. Results showed that 1,25(OH)2D3 supplementation significantly increased BCG killing by on average 16 %, although responses varied between 1 % and 38 % killing. Serial cell subset depletion was then performed on PBL prior to 1,25(OH)2D3 incubation and BCG infected as before to analyse the contribution of major cell types to mycobacterial growth control. Specific antibodies and either magnetic cell separation or density gradient centrifugation of monocytes, granulocytes, CD3+, CD4+, and CD8+ T lymphocytes were used to capture each cell subset. Results showed that depletion of granulocytes had the greatest impact on BCG growth, leading to a significant enhancement of bacterial colonies. In contrast, depletion of CD4+ or CD8+ T cells individually, or in combination (CD3+), had no impact on mycobacterial growth control. In agreement with our previous data, 1,25(OH)2D3 significantly increased bacterial killing in PBL, in monocyte depleted samples, and a similar trend was observed in the granulocyte depleted subset. In addition, specific analysis of sorted neutrophils treated with 1,25(OH)2D3 showed an enhanced microbicidal activity against both BCG and a virulent strain of M. bovis. Lastly, data showed that 1,25(OH)2D3 stimulation increased reactive oxygen species (ROS) production and the expression of genes encoding host defence peptides (HDP) and pathogen recognition receptors (PRRs), factors that play an important role in the microbicidal activity against mycobacteria. In conclusion, the vitamin D metabolite 1,25(OH)2D3 improves antimycobacterial killing in bovine PBLs via the synergistic activity of monocytes and granulocytes and enhanced activation of innate immunity.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Tuberculose , Animais , Bovinos , Masculino , Vacina BCG , Linfócitos T CD8-Positivos , Tuberculose/veterinária , Vitamina D/farmacologia , Vitaminas
5.
Sci Rep ; 11(1): 18969, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556723

RESUMO

A role for vitamin D in the immune system is emerging from human research but data in the bovine is limited. In the current study, 48 Holstein-Friesian calves were randomly assigned to one of 4 groups designed to expose calves to divergent vitamin D levels for a 7 month period and to determine its effects on circulating immunity in young calves. Concentrations of circulating 25-hydroxyvitamin D (25OHD) was measured in serum using a commercial ELISA with validated bovine standards. Results showed that mean circulating concentrations of 25OHD at birth was 7.64 ± 3.21 ng/ml indicating vitamin D deficiency. Neither the injection of Vit D3 at birth nor the elevated levels in milk replacer yield discernible changes to pre-weaning circulating concentration of 25OHD. No calf reached the recommended level of vitamin D immune sufficiencyof 30 ng/ml of 25OHD until at least 3 months of age (T4). Increasing dietary Vit D3 via ration in the post-weaning period significantly elevated 25OHD concentrations in serum in VitD-In calves. Maximal levels of circulating 25OHD were achieved in VitD-Out calves, reaching 60.86 ± 7.32 ng/ml at 5 months of age (T7). Greatest divergence in haematology profile was observed between Ctl-In vs VitD-In groups with Ctl-In calves showing an elevated count of neutrophils, eosinophils, and basophils associated with reduced 25OHD concentrations. Neither IL-8 expression nor ROS production in serum were significantly different between calves with high and low 25OHD, indicating that other vitamin D-dependent mechanisms may contribute to the divergent circulating cellular profiles observed. This novel data on the vitamin D status of neonatal calves identifies a significant window of vitamin D insufficiency which is associated with significant differences in circulating immune cell profiles. Vitamin D insufficiency may therefore exacerbate pre-weaning disease susceptibility, and further work in now warranted.


Assuntos
Bovinos/imunologia , Leucócitos , Deficiência de Vitamina D/imunologia , Vitamina D/análogos & derivados , Ração Animal , Animais , Animais Recém-Nascidos , Bovinos/sangue , Colecalciferol/administração & dosagem , Suplementos Nutricionais , Suscetibilidade a Doenças , Contagem de Leucócitos , Masculino , Estações do Ano , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/diagnóstico , Deficiência de Vitamina D/terapia , Desmame
6.
Transbound Emerg Dis ; 68(6): 3360-3365, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33249779

RESUMO

Mycobacterium bovis is the main cause of bovine tuberculosis (BTB) in cattle and can also infect humans. Zebu cattle are considered more resistant to some infectious diseases compared with Holstein-Friesian (HF) cattle, including BTB. However, epidemiological studies may not take into account usage differences of the two types of cattle. HF cattle may suffer greater metabolic stress due to their more or less exclusive dairy use, whereas Zebu cattle are mainly used for beef production. In experiments conducted so far, the number of animals has been too small to draw statistically robust conclusions on the resistance differences between these cattle breeds. Here, we used a BCG challenge model to compare the ability of naïve and vaccinated Zebu and HF cattle to control/kill mycobacteria. Young cattle of both breeds with similar ages were housed in the same accommodation for the duration of the experiment. After correcting for multiple comparisons, we found no difference between naïve HF and Zebu (ρ = 0.862) cattle. However, there was a trend for vaccinated HF cattle to have lower cfu numbers than non-vaccinated HF cattle (ρ = 0.057); no such trend was observed between vaccinated and non-vaccinated Zebu cattle (ρ = 0.560). Evaluation of antigen-specific IFNγ secretion by PBMC indicated that Zebu and HF cattle differed in their response to mycobacteria. Thus, whilst there may be difference in immune responses, our data indicate that with the number of animals included in the study and under the conditions used in this work, we were unable to measure any differences between Zebu and HF cattle in the overall control of mycobacteria. Whilst determination of different susceptibilities between Zebu and HF cattle using the BCG challenge model will require larger numbers of animals than the number of animals used in this experiment, these data should inform future experiments.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Animais , Vacina BCG , Bovinos , Imunidade , Interferon gama , Leucócitos Mononucleares , Tuberculose Bovina/epidemiologia
7.
J Zhejiang Univ Sci B ; 21(11): 856-870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150770

RESUMO

The study and characterization of biomolecules involved in the interaction between mycobacteria and their hosts are crucial to determine their roles in the invasion process and provide basic knowledge about the biology and pathogenesis of disease. Promising new biomarkers for diagnosis and immunotherapy have emerged recently. Mycobacterium is an ancient pathogen that has developed complex strategies for its persistence in the host and environment, likely based on the complexity of the network of interactions between the molecules involved in infection. Several biomarkers have received recent attention in the process of developing rapid and reliable detection techniques for tuberculosis. Among the most widely investigated antigens are CFP-10 (10-kDa culture filtrate protein), ESAT-6 (6-kDa early secretory antigenic target), Ag85A, Ag85B, CFP-7, and PPE18. Some of these antigens have been proposed as biomarkers to assess the key elements of the response to infection of both the pathogen and host. The design of novel and accurate diagnostic methods is essential for the control of tuberculosis worldwide. Presently, the diagnostic methods are based on the identification of molecules in the humoral response in infected individuals. Therefore, these tests depend on the capacity of the host to develop an immune response, which usually is heterogeneous. In the last 20 years, special attention has been given to the design of multiantigenic diagnostic methods to improve the levels of sensitivity and specificity. In this review, we summarize the state of the art in the study and use of mycobacterium biomolecules with the potential to support novel tuberculosis control strategies.


Assuntos
Antígenos/química , Biomarcadores/química , Mycobacterium tuberculosis/imunologia , Tuberculose/diagnóstico , Tuberculose/imunologia , Aciltransferases/imunologia , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Biomarcadores/metabolismo , Humanos , Sistema Imunitário , Incidência , Proteínas Recombinantes/química , Risco , Sensibilidade e Especificidade
8.
PLoS One ; 11(5): e0155207, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27171239

RESUMO

The purpose of this study was to identify relationships between spoligotypes of M. bovis from cattle in Mexico and those reported in countries with free trade of cattle with Mexico: Australia, Canada, New Zealand and the United States of America. Mexican spoligotypes were obtained from isolates collected from cattle in different parts of the country. Spoligotypes from Canada and New Zealand were obtained from different reports in the literature. Those from the United States were obtained from the database of the National Veterinary Services Laboratory in APHIS-USDA. In order to perform the analysis in a single data set, spoligotypes were all converted to binary data and classified according to www.mbovis.org or www.pasteur-guadeloupe.fr:8081. Epidemiologic information included country and species infected. From 3,198 isolates, 174 different spoligotypes were obtained, 95 were orphans. Ninety one percent of the isolates came from the Unites States (n = 1,609) and Mexico (n = 1,323). Spoligotype SB0265 is shared between Canada and the United States in cattle and wildlife. Six spoligotypes, SB0673, SB0121, SB0145, SB0971, SB0140 and SB1165, were frequent in cattle and wildlife in the United States and cattle in Mexico, suggesting wide exchange of strains. Spoligotype SB0669 was found only in Mexico. Spoligotype SB0140 was the most common in Australia and the sixth in the United States and Mexico. In a phylogenetic analysis, spoligotype SB0140 appears as the oldest spoligotype in the data set, suggesting this as the ancestral spoligotype for all spoligotypes in the five countries. Some spoligotypes are shared by animals and humans, corroborating the zoonotic importance of M. bovis.


Assuntos
Comércio , Internacionalidade , Mycobacterium bovis/genética , Animais , Técnicas de Tipagem Bacteriana , Bovinos , México , Mycobacterium bovis/classificação
9.
J Microbiol Biotechnol ; 25(8): 1181-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25737117

RESUMO

Tuberculosis (TB) is an infectious disease transmitted by aerosol droplets and characterized by forming granulomatous lesions. Although the number of people infected in the population is high, the vast majority does not exhibit symptoms of active disease and only 5-10% develop the disease after a latent period that can vary from weeks to years. The bases of the immune response for this resistance are unknown, but it depends on a complex interaction between the environment, the agent, and the host. The analysis of cellular components of M. tuberculosis shows important host-pathogen interactions, metabolic pathways, virulence mechanisms, and mechanisms of adaptation to the environment. However, the M. tuberculosis proteome still remains largely uncharacterized in terms of virulence and pathogenesis. Here, we summarize some of the major proteomic studies performed to scrutinize all the mycobacterial components.


Assuntos
Proteínas de Bactérias/análise , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/fisiologia , Proteoma/análise , Proteômica/métodos , Tuberculose/microbiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA